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A review is p resen ted  o f  the laws gove rn ing  the re la t ion  to cur ren t  dens i ty  o f  the changes  in 

c o n c e n t r a t i o n  o f  e lec t roac t ive  species at  the surface  o f  an  electrode.  Several  diverse examples  are 

repor ted .  W a y s  in which  these re la t ionsh ips  m a y  be used to p r o b e  fluid m o t i o n  are explored.  

1. Introduction 

Electrochemistry can serve as a tool in the study of 
fluid motion. The principle involved is to alter the 
concentration of a particular solute at the surface of 
an electrode and subsequently detect the altered con- 
centration at the same, or another, electrode. Dis- 
tinctly different results will be obtained accordingly as 
the fluid is quiescent or moving. In the latter case, the 
technique can provide information about  the direction 
and speed of motion. 

The term "moni to r"  will be used to describe the 
solute whose concentration is altered electrochemi- 
cally. The monitor  may be absent from thefluid initi- 
ally and be generated either from the electrode itself, 
or from some precursor species present in the fluid. 
For example, Cu 2+ monitor  ions may be generated 
from a copper electrode. 

Cu(s) , Cu 2+ (soln) + 2e- (1) 

into many fluids. In saline natural waters, the hypo- 
chlorite ion can serve as the monitor, being generated 
by the reaction 

Cl - (aq)  + H20(l )  , 

2H +(aq) + OC1 (aq) + 2e (2) 

at an inert anode. Alternatively some preexisting 
solute, such as dissolved oxygen or hydroxide ion in 
an aqueous solution, can serve as monitor  and its 
concentration may be either diminished 

O2(aq) + 4H+(aq) + 4e > 2H20(l)  (3) 

or enhanced 

2H20(1) + 2e , 2OH (aq) + H2(aq) (4) 

by a suitable electrode reaction. 
Let us generalize these examples by considering the 

case of  a monitor  solute whose concentration is uni- 
formly equal to c e before any current is passed. Start- 
ing at time t = 0, a current passes through the elec- 
trode, as a result of  which the concentration of the 
monitor at the surface of the electrode becomes dif- 
ferent from c b. Because the current density and/or the 
surface concentration may change with time, these 

quantities may be denoted i ( t )  and c"(t). The purpose 
of this article is to investigate the relationship 

c"(t) --  c b <a, i ( t )  (5) 

between the surface c o n c e n t r a t i o n  e x c u r s i o n  c"(t) - c b 
and the c u r r e n t  dens i t y  i ( t ) .  In some cases c~(t) could 
be zero; in others, c h would be zero. 

Let n be the number of  electrons produced con- 
currently with one ion or molecule of  the monitor  

generation 
precursor , ' monitor  + ne (6) 

consumption 

being negative when it is a reduction process that 
generates the monitor 

generation 
precursor - ne ~ ' monitor (7) 

consumption 

Table 1 shows how the sign of n correlates with those 
of  the current density and the concentration excursion. 

2. Fundamental relationships 

The connection between the monitor concentration 
excursion at the electrode surface and the current 
density is not made directly, but through the inter- 
mediacy of the flux density j" of the monitor  at the 
surface: 

c~(t) --  c" r  <=> i ( t )  (8) 

Faraday 's  law provides the simple relationship 

i ( t )  
j"(t) - (9) 

n F  

between the surface flux density and the current den- 
sity. This equation is valid whenever there is no 
adsorption of the monitor,  or even if there is adsorp- 
tion provided that its extent does not change. 

The relationship between the monitor  surface con- 
centration excursion and its surface flux density is no 
different, in principle, from the corresponding rela- 
tionship 

c (x ,  t) - c b < : ~ j ( x ,  t) (10) 

anywhere in the solution. Here x is used to denote the 
coordinate measured from, and normal to, the elec- 
trode. The form of the relationship between the local 

* This paper was presented at the Workshop on Electrodiffusion Flow Diagnostics, CHISA, Prague, August 1990. 
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Table 1. Allocation of s(gns to electron number, concentration excur- 
sion and current density. 

Monitor Process" Electrode n d(t) - c t' i(t) 

oxidant generation anodic + + + 
oxidant consumption cathodic + - 
reductant generation cathodic - + 
reductant consumption anodic + 

concentration and the local flux is determined by 
which of the possible transport mechanisms - dif- 
fusion, migration and/or convection - operates. In 
the most general case, when all three mechanisms 
contribute, the flux equation is 

3c zuc 
- D ~ x  + - ~  X~. + cv,. = j (11) 

where X,. denotes the component of the electric field 
along the x-coordinate and v.,. denotes the component 
of the fluid velocity in the same direction. The dif- 
fusion coefficient, D, charge number, z, and mobility, 
u, of the monitor are interconnected by the Nernst- 
Einstein relationship [1], which permits the flux 
equation to be rewritten as 

[ ~c zFc ] 
- D  ~x R T X ~  + cv.,. = j (12) 

Another interrelationship between concentration and 
flux density is provided by the conservation equation. 
For the purposes of the present article, this may be 
expressed as 

3c ~j c~ 
Ot + kc  - ~?x J ~x ln A (13) 

The final term in this equation depends on the geo- 
metry of the region surrounding the electrode and 
reflects the rate at which the cross-sectional area, A, 
available for transport increases as one proceeds away 
from the electrode. The kc  term is included in case the 
monitor is unstable in the fluid and decomposes by 
some first-order (or pseudo first-order) process with 
rate constant k. 

The literature of electroanalytical chemistry, for 
example [2], and electrochemical engineering, for 
example [3], is replete with analytical and numerical 
solutions to the simultaneous equations, (12) and (13), 
in numerous geometric situations and subject to a 
variety of boundary conditions. With the help of 
Faraday's law, Equation 9, such solutions lead immedi- 
ately to our objective: expressions relating the monitor 
surface concentration excursion to the current density. 
The next section will address examples of relation- 
ships obtained in this way. 

3. Examples of interrelationships 

Below follows a catalogue of  six examples, presented 
with commentary but without proofs, of how the 
concentration excursion of a monitor at the surface of 
the electrode is related to the current density. The 
chosen examples are simple, but representative, ones. 

They are all "general" in the sense that the boundary 
condition at the electrode surface, which depends on 
the electrochemical technique, is not specified. 

3. l. Planar semi-infinite diff~tsion 

If the electrode is planar and the monitor is trans- 
ported only by diffusion in a region that extends 
indefinitely from the electrode, then the interrelation 
between the concentration excursion and the current 
density is 

1 d 1/2 
c'(t) - c b - n f  x /D dt i/2 i(t) (14) 

[4]. Here d W-/dt J/2 is the semiintegration operator 
[5]. Alternatively, the relationship may be written in 
terms of a convolution [6] 

c(t)  ? i(t) 1 
- - , - -  ( 1 5 )  

nF ~/(~zDt) 

where the asterisk signifies the operation 

f ( t ) * g ( l )  = f ~ i f ( r ) g ( t -  ~ ) d r  = g ( t ) . f ( t )  (16) 

3.2. Spherical diffusion 

If the electrode is a sphere (or some segment of a 
sphere, such as a hemisphere) of  radius r, Equation 13 
for a stable monitor becomes 3c/3t = -(~j /(?x)  - 
2j/(r + x). The sought relationship is 

c~(t ) _ ?  _ i(t) 
nF 

* ( s  r 

in this case [7], resembling (15) but with a more com- 
plicated convolution. 

When t becomes large compared with r~-/D, the 
convolution reduces to the simple result 

d( t )  c h ri(t) -- -- t >~ r2/D (18) 
nFD 

in which the concentration excursion is proportional 
to the current density. Because of  their small radii this 
result is soon achieved at hemispherical mieroe[ec- 
trades, which is why steady-state voltammetry [8] may 
be successfully realized at such electrodes. 

3.3. Diffusion plus migration 

The inclusion of  migration as a contributor to monitor 
transport leads to a massive increase in the complexity 
of  the problem of deducing interrelation expressed in 
(5). However, the diffusion-plus-migration analogue 
of  Equation 18 may be found (for example, see the 
ferricinium case in [9]) for the case in which the 
monitor is an ion formed by an I n I-electron transfer 
from an uncharged precursor, provided that all 
other ions present have charge numbers of  + n. The 
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interrelation is 

c~(t) _ cb ri(t) [ nFDc~ 7 
- 2nFD l + r i ( t )  + nFDc~J t>>r2/D 

(19) 

where c~ is the total bulk concentration of electro- 
inactive electrolyte. 

3.4. Diffusion plus reaction 

If the monitor is electrogenerated at a planar electrode 
and, in addition to semiinfinite diffusion, undergoes a 
first-order reaction, then the relationship between the 
concentration excursion and the current density is 
again a convolution. In this case [10] 

cS(t ) i(t) (exp ( - k t ) )  
- n F  * \  7 ( ~ - ~ )  } ( 2 0 )  

the c b term having been omitted because there is no 
bulk monitor concentration. 

The convolution integrals in equations such as (20) 
may be evaluated if the form of the current density 
versus time relationship is known. For instance, if the 
current density is a constant, equation (20) reduces to 

e r f x / ( k t ) (  i ) 
c~(t) - x /k  - ~  i(t) = constant = i 

(21) 

Specifying the boundary condition in this way is 
equivalent to stipulating a particular experimental 
regime: in this instance, galvanostatic chronopoten- 
tiometry. 

3.5. Diffusion plus advection 

Equations 12 and 13 have been formulated in terms of 
a single distance coordinate and this is rarely adequate 
when convective transport is operative. However, in 
the case of porous electrodes through which the fluid 
can flow at a constant rate with little impediment, the 
hydrodynamic situation may be adequately described 
by these equations with v,~ being a (negative) constant. 
The term "advection" is used to describe the simple 
hydrodynamic regime encountered in this instance. 
When diffusion and advection contribute to transport, 
migration being absent, the equation 

c*(t) _ ce _ i(t) ~exp ( - v 2 t / 4 D )  
n F  * k x/(rtDt) 

v ( v  N / ( D ) ) ]  (22, - 2D erfc 

describes the relation between the monitor surface 
concentration excursion and the current density. At 
times long in comparison with 4D/r  2 the function with 
which i ( t ) /nFi s  convolved becomes a constant, so that 
the convolution integral reduces to a simple temporal 
integral 

- v  Io i(~) d~ t >~ 4D/v  2 (23) c'(t) -- c h ~- nFD 

Thus the concentration excursion becomes proportional 
to the total charge passed and to the flow velocity v. 

3.6. Diffusion within a boundary layer 

The concept of a "boundary layer" - a region within 
which diffusion is the sole transport mode and beyond 
which concentrations are uniform - provides a valu- 
able, and surprisingly accurate, model for many 
hydrodynamic situations [11, 12] that would other- 
wise be insoluble. The form of interrelation for a 
boundary layer of thickness L is [13] 

cb i(t, 1 ( D t )  cS(l) - - * - 02 0; ( 2 4 )  
n F  L 

where 02 denotes a theta function [14]. Once again, 
there is a long-time simplification of this result: if the 
current density is effectively constant on a timescale of 
duration L2/D, an effective steady state is established 
in which there is a proportionality 

Li( t )  (25) 
d ( t )  - c b ~- nFD 

between the concentration excursion and the current 
density. 

While Equation 24 is only an approximation in 
hydrodynamic situations, it applies exactly in thin- 
layer cells such as those described by Armitage et al. 
[15] and extended by Colyer et al. [16] to include 
migration. In these applications of Equations 24 and 
25, L is the half-width of the thin layer. 

4 .  G e n e r a l i z a t i o n  

All the time-dependent examples considered above 
(and several others [13]) show a concentration excur- 
sion related by a convolution of the form 

c ~ (t) c a i(t) - -  = - -  * g ( t )  ( 2 6 )  
n F  

to the current density, where g(t)  is some function 
of time having the dimensions of a reciprocal length. 
In all cases the short-time behaviour is described 
by 

c'(t)  - c b - i(t) 1 
n F  * X/(TcDt~----) 

1 d-~/2 
- n F x / ( D  , dt_~- fi i(t) t -+ 0 (27, 

the concentration excursion being proportional to the 
semiintegral of the current density. 

In several cases the long-time behaviour becomes 
steady-state, with a direct proportionality between 
c'(t) - c a and i(t), if conditions remain unchanging or 
vary sufficiently slowly. Representing such a steady- 
state relationship by 

c~(0 ,,~ i(0 - - t --+ 0 o  ( 2 8 )  
nFw 

it is evident that w has the dimensions of velocity 
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(ms--~). It may be argued that steady states are 
possible only when it is possible to construct a velocity 
from the physical parameters of the system. Thus 
for the systems considered in sections 3.2 and 3.6, 
w = D/r and w = D/L, respectively. Note that the 
steady state discussed in section 3.3 did not corre- 
spond to a direct proportionality between concentra- 
tion excursion and current density. 

5. Applications 

To use relationships of the type discussed to determine 
transport parameters requires measurement or cal- 
culation of the current density and the concentration 
of monitor at the electrode surface. 

Current density (more strictly the average current 
density) is easily determined from the measured cur- 
rent at an electrode of known area, but surface con- 
centrations are not directly accessible from electrical 
measurements. However, two routes exist for obtain- 
ing information about surface concentrations from 
potential measurements, 

If the electrode reaction involving the monitor is 
reversible, the Nernst equation permits the monitor 
surface concentration c'(t) to be determined from the 
electrode potential E(t). The chain of interrelation- 
ships 

E(t) r c'(t) -- c b <=> f ( t )  <=> i(t) (29) 

then exists and permits a connection to be made 
between two independently measurable electrical 
variables. For example, if a monitor is reversibly elec- 
trogenerated by a constant current density from a 
precursor at unit activity under conditions in which 
Equation 20 is obeyed then the potential evolves with 
time according to the equation 

RT { i erf x/(kt) } 
E(t) = E ~ + ~ ln nFx/(kD) (30) 

where E ~ is the standard potential, The parameters D 
and k are thus experimentally accessible. 

The second route by which information can be 
gleaned concerning cS(0 is useful when the current 
density is the controlled electrical variable. If a current 
signal is applied such that cS(t) is caused to decrease 
with time then, ultimately, the monitor acquires zero 
concentration at the electrode surface. At this instant, 
the so-called "transition time", the electrode potential 
usually displays a sudden dramatic change in value, 
irrespective of the degree of reversibility of the elec- 
trode reaction. For  example, if the current is main- 
tained constant in the experiment described by 
Equation 14, then (since the semiintegral of a constant 
i is 2i~/(t/rt)) the transition time is ~n~-F2D(cb)2/4i. 
Thus, from measurements of the transition time, 
transport parameters - in this case the diffusion 
coefficient D - are accessible. 

Similar procedures can provide data on fluid flow. 
The example presented in the final section of this 
article has a more modest objective - simply to assess 
whether the fluid is in motion or not. 

6. Generation/recapture experiment 

Consider an experiment having three phases. In 
the first, t < 0, the electrode is at rest and the moni- 
tor is absent from its vicinity. During the second 
phase, 0 < t < T, the monitor is generated at the 
electrode by the passage of some time-dependent 
current density i(t). The second phase ends at some 
arbitrary time, T. During the third phase, t > T, 
the electrode is polarized at such an extreme poten- 
tial (rather negative if the monitor is an oxidant, 
positive if it is a reductant) that the monitor acquires 
a surface concentration of  zero, c'(t > T ) =  O. 
Under these conditions it can be shown [17] that the 
third-phase current density arising from the "recap- 
ture" of the monitor generated during the second 
phase, is 

- 1 ~ ,  i ( r )  ( T  - ~ ) ' / :  
i(t > T) - =(t T) 1/2 J0 0 - - -  ~c) dr (31) 

provided the fluid is motionless. Any motion of the 
fluid leads to a smaller recapture current. 

Equation 31 is valid irrespective of the way in which 
the generation current density depends on time. If a 
constant generation current is employed, the integral 
evaluates to 

i ( t>  T ) - - 2 i I (  T )u2 ( T )u2] 
= t - ~ ]  - a r c t ank t  - T]  ] 

(32) 
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